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Correspondence Item 
Tolerance o f  Non-linearities in Relay Systems* 

Tol6rance aux non-lin6arit6s dans les syst~mes ~ relais 

Toleranzen von Nichtlinearit~iten in Relaissystemen 

I - I p ~ I e M ~ e M O C T ~ ,  H e Y I I 4 H e ~ H O C T e ~  B p e . r I e ~ H b I X  C I4C TaM aX 

P. M O Y L A N ' ~  a n d  J. M O O R E t  

Smnmary--l t  is shown that a nominally linear system with 
relay feedback is insensitive to unintentional time-variable 
gains or non-linearities in the input transducers when the 
relay is chattering. 

THIS note considers the stability properties of relay systems 
having the structure indicated in Fig. 1 and the state equa- 
tions 

ic = F x  + g f l [ sgn (k ' x ) ,  t ] sgn (k ' x )  (1) 
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FIG. 1. 

where fl[sgn(k'x), t] represents a non-linearity. Using the 
notation B+=B(1, t) and B - = B ( - 1 ,  t), the class of non- 
linearities considered are those which satisfy 

fl+ a n d  f l -  are  c o n t i n u o u s  in  t (2a) 

and 

fl+>cl>O; f l - > - c 2 > O  (2b) 

for some positive constants cl and c2. Clearly the conditions 
(2) will be satisfied for most non-linearities which occur 
in practice. 

First we show, using the ideas of ANDRE and SEmERr [1], 
that when the relay is in its chattering mode, the chattering 
motion is given by the linear state equations 

f ,~ k ' F \  
k = / r - # , - - 7 - - / x  ; X( to)=Xo (3) 
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where the initial state x0 is of course in the hyperplane 
k'x=O as are the trajectories given by Eq. (3). The signifi- 
cance of this result is that it is precisely the same equation 
of motion as occurs for the chattering mode of the relay 
system when the non-linearity p is replaced by an arbitrary 
linear gain dement (see Ref. [1]). This means that the stabil- 
ity properties of Eq. (1) are largely independent of B, as the 
note goes on to show. 

It is well known [2] that necessary conditions for stability 
near the origin are that k'gB+<~O and k'gB-<~O, and that a 
necessary condition for chattering is that - [k'gB-I < k 'Fx < 
[k'gB+[. From Eq. (2), it follows that the existence of a chat- 
tering regime is independent of B; note, however, that the 
extent of this regime does depend on ,8. These conditions 
will be assumed to hold, and in particular we first consider 
the special case k'g<O. For this case it is necessary to 
assume, as in [1], that associated with the relay is a small 
time delay. 

The trajectory of the system when the relay is chattering 
is shown in Fig. 2. If the relay has a time delay r, then the 

k' x > 0  
×2 k'x :O 

FIo. 2. 

state equation is ~(t)=Fx(t)+gB[sgn (k ' x ( t -O) ,  t]sgn 
(k'x(t--r)). In the notation of Fig. 2, let 

x i  = x ( q )  ; x 2 = x ( t l  + z )  ; x 3 = x ( q  + A t )  

where obviously At>r .  In the interval [tl, tl +r],  the relay 
output is --1, so that 

x2 = x I + z ( F x  - g f l - )  + 0(z2).  

In the interval [tlnt-~ -, tt +At], the control has the value 
+ 1, so we now have 

x3 = x2 + (At- T)(Fx + g/~ +) + 0(~ 2) 

= x l  + A t ( F x  + g f l + ) - T g ( f l  + + f l - )  +O(z2) .  

Multiplying this equation by k'  gives 

0 = A t ( k ' F x  + k 'g f l  +) - zk 'g ( f l  + + f l - )  + O(z 2) 

or  

z _ k ' F x  + k 'g f l  + + O(Q.  

At k' g([S+ +13 -) 

343 



344 Correspondence Item 

Now from above 

p p + 
+ + . . . .  k Fx + k gfl + 0(~) 

x3-x~-Fx+g~At - g ~  +P ~ ~  

k'F 
= Fx-o-E gx + . 

Clearly as z~0 ,  the system trajectory approaches arbit- 
rarily close to the trajectory defined by Eq. (3). This means 
that if the feedback gain k is chosen so that Eq. (3) is asymp- 
totically stable on the hyperplane k ' x=0 ,  then the original 
system (1) is asymptotically stable in its chattering mode for 
arbitrary ,0 satisfying Eq. (2). The theory of relay systems, 
see for example [2], now gives the result that since system (1) 
is asymptotically stable in its chattering mode it is also 
asymptotically stable for all sufficiently small initial states. 

We conclude that in order to ensure (at least) local 
asymptotic stability and chattering mode asymptotic 
stability the feedback gain k may be chosen independently 
of the non-linearity ,8. 

Consider now the case when k'g=O. From a result of 
ANosov [3], it appears that a necessary condition for stability 
in this case is k'Fg<O, so we consider only this condition. 
The result is then as follows: there is no "chattering", in 
the sense of  Ref. [1], hut all trajectories suitably close to 
the origin eventually approach arbitrarily close to the hyper- 
plane k'x---k'Fx=O, and the effective trajectory is then 
given by 

/ k ' F 2 \  (,) 

The result is derived as follows. The theory of [1] is 
sufficient to show that in this case the state trajectory near 
the switching line is as in Fig. 3, i.e. it spirals around the 
intersection of the two hyperplanes k'x=O and k'Fx=O. 

k' Fx = @ 

k' F x > O /  k" gx <0 

x3 

k'x>O 
xz 

k'x<O 
k /x  = 0 

F I G .  3. 

Also, the switching is regular [1] and so it is unnecessary to 
assume any time delay. In the notation of Fig. 3, then, 

X 2 = X  1 +TI2(Fx--gfl-)+O(Tt3 2) 
and 

X 3 --X 2 -k (~'13 --~12)(Fx'Fgfl+)+O(T13 2) 

where rlz and r13 are the times taken to go from x~ to x2 and 
x3 respectively. These equations may be solved, as before, 
to give 

x 3 - x l  [ , .  k'F2"~ _,, .  
= / / '  - -  g L-7-~-/X -P t~,'C 13 ) 

Tl3 \ k FaJ 

whence the result is obvious. 
Moreover, from ReL [1] or [2], local asymptotic stability 

follows if chattering occurs (i.e. k'Fgfl<O) and if the chat- 
tering trajectories are asymptotically stable. These condi- 
tions are independent of ~8, provided only that Eq.(2) holds. 
It should be noted, however, that the region of local asymp- 
totic stability does depend on P. 

In the design of relay feedback systems that are at least 
locally asymptotically stable, the choice of k is governed by 
the requirement that k'g<O (or k'Fg<O) and that the 
coefficient matrices of  Eqs. (3) or (4) have (n-- l )  or (n--2) 
eigenvalucs with negative real parts. (It is easily shown, see 
Ref. [2], that the other eigenvalues are zero.) The significance 
of the present theory is that it shows that a controller design 
can be carried out with little or no knowledge of  any un- 
intentional non-lineaxities at the system input. The results 
also hold for a large class of input disturbances, since these 
may in many cases be included in the non-linearity P. 
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R6sum6--II est montr6 qu'un syst6me nominalement l/n~tire 
avec reaction A relais est insensible aux variations aeciden- 
telles des gains darts Iv temps ou aux non-lin6arit6s darts les 
capteurs d'entr6¢ lorsque le relais vihre. 

Zusammmfasmmg--Gezoigt wird, dab ein nominell linear~ 
System mit Relais-Riickfiihrung unempfindlich ist gagentiber 
unabsichtlicher zeitvariabler Verstarkung oder Nicht- 
lineaxit~iten in den Eingangswandlern, wenn das Relais 
prellt. 

PeamMe----Hoxa3r~aeTca qTO H O ~ O - m m c l ~ a a  
cac'reMa c peae~o t l  o6parnofl c a ~ s m  H e ~ n m x e m ~ a  x 
C./ly~al~mlM R3MeneHHmVl no BpeMeHH xo:~il111effroa 
yeJ~ulemLq HJm g HeYn~egHOCTgM B BXO~J~MX ~trmm~aX 
xor~a pene Ba6pllpycr. 


