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Tolerance of Non-linearities in Relay Systems™
Tolérance aux non-linéarités dans les systémes a relais
Toleranzen von Nichtlinearitéiten in Relaissystemen
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Summary—It is shown that a nominally linear system with
relay feedback is insensitive to unintentional time-variable
gains or non-linearities in the input transducers when the
relay is chattering.

THis note considers the stability properties of relay systems
having the structure indicated in Fig. 1 and the state equa-
tions
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where Blsgn(k’x), f] represents a non-linearity. Using the
notation f+=p(1, 1) and B~=B(—1, ¢), the class of non-
linearities considered are those which satisfy

B* and B~ are continuous in ¢ (2a)

and

Bt=c,;>0; 7=, >0 (2b)

for some positive constants ¢, and ¢,. Clearly the conditions
(2) will be satisfied for most non-linearities which occur
in practice.

First we show, using the ideas of ANDRE and SEIBERT [1],
that when the relay is in its chattering mode, the chattering
motion is given by the linear state equations

X =(F - glf-f)x ; x(tg)=xg
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where the initial state xo is of course in the hyperplane
k’x=0 as are the trajectories given by Eq. (3). The signifi-
cance of this result is that it is precisely the same equation
of motion as occurs for the chattering mode of the relay
system when the non-linearity g is replaced by an arbitrary
linear gain element (see Ref. [1]). This means that the stabil-
ity properties of Eq. (1) are largely independent of B, as the
note goes on to show.

It is well known [2] that necessary conditions for stability
near the origin are that k’gf+<0 and k’'gBf-<0, and that a
necessary condition for chattering is that —|k’gf-| <k’Fx<
|k’gB*|. From Eq. (2), it follows that the existence of a chat-
tering regime is independent of f; note, however, that the
extent of this regime does depend on f. These conditions
will be assumed to hold, and in particular we first consider
the special case k'g<0. For this case it is necessary to
assume, as in [1], that associated with the relay is a small
time delay.

The trajectory of the system when the relay is chattering
is shown in Fig. 2. If the relay has a time delay 7, then the

kx>0
X2

k“x <0
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state equation is X(f)=Fx(f)+gBlsgn (kK'x(t—7)), fJsgn
(k’x(t—1)). In the notation of Fig. 2, let
X =x(t); Xa=x(t;+71);

where obviously Az>7. In the interval [#1, ¢; +7], the relay
output is —1, so that

X=Xy +t(Fx~gp~)+0(t?).

X3=x(t; + Af)

In the interval [t 47, ¢4 Af], the control has the value
+1, so we now have

X3=X, +(At—1)(Fx+gp*)+0(z?)
=Xy +AU(Fx+gB*)—1g(B* +B7)+0(z?).

Multiplying this equation by &’ gives
O0=AuKk'Fx+K'gB*)—k'g(B* +B7)+0(z%)

or

t _Kk'Fx+k'gp*
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Now from above

K'Fx+k'gB*
k'g(B*+87)

X

-S—gt—"-‘-=Fx+gﬂ+—g(ﬂ+ +57) +0(7)

k'F
=Fx—g—x+0(1).
yK,g 0(v)

Clearly as t—0, the system trajectory approaches arbit-
rarily close to the trajectory defined by Eq. (3). This means
that if the feedback gain k is chosen so that Eq. (3) is asymp-
totically stable on the hyperplane k’x=0, then the original
system (1) is asymptotically stable in its chattering mode for
arbitrary B satisfying Eq. (2). The theory of relay systems,
see for example [2], now gives the result that since system (1)
is asymptotically stable in its chattering mode it is also
asymptotically stable for a// sufficiently small initial states.

We conclude that in order to ensure (at least) local
asymptotic stability and chattering mode asymptotic
stability the feedback gain & may be chosen independently
of the non-linearity 8.

Consider now the case when &'g=0. From a result of
Anosov [3], it appears that a necessary condition for stability
in this case is k’Fg <0, so we consider only this condition.
The result is then as follows: there is no ‘“‘chattering”, in
the sense of Ref. [1], but all trajectories suitably close to
the origin eventually approach arbitrarily close to the hyper-
plane k’x=k’Fx=0, and the effective trajectory is then
given by

k'F?
( gk,Fg C))

The result is derived as follows. The theory of [1] is
sufficient to show that in this case the state trajectory near
the switching line is as in Fig. 3, i.e. it spirals around the
intersection of the two hyperplanes k’x=0 and k'Fx=0.

kK Fx=0
kK Fx>0 kK Fx<O
X3
kK'x>0
X2
k'x =0
K'x<O
Xy
FiG. 3.

Also, the switching is regular [1] and so it is unnecessary to
assume any time delay. In the notation of Fig. 3, then,
X2=X; +71(Fx—gp ™) +0(r;:%)

and
X3=X3+ (T 3~ T )(FX+gB")+0(1y5%)

where 712 and 1,3 are the times taken to go from x; to x; and
x3 respectively. These equations may be solved, as before,
to give

rp2

=¥ _(p_ KF
Tia k'Fg

)x+0(113)

whence the result is obvious.

Moreover, from Ref. [1] or [2], local asymptotic stability
follows if chattering occurs (i.e. k’FgB<0) and if the chat-
tering trajectories are asymptotically stable. These condi-
tions are independent of B, provided only that Eq.(2) holds.
It should be noted, however, that the region of local asymp-
totic stability does depend on 8.

In the design of relay feedback systems that are at least
locally asymptotically stable, the choice of k is governed by
the requirement that k’g<0 (or k'Fg<0) and that the
coefficient matrices of Eqs. (3) or (4) have (n—1) or (n—2)
eigenvalues with negative real parts. (It is easily shown, see
Ref, [2], that the other eigenvalues are zero.) The significance
of the present theory is that it shows that a controller design
can be carried out with little or no knowledge of any un-
intentional non-linearities at the system input, The results
also hold for a large class of input disturbances, since these
may in many cases be included in the non-linearity 8.
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Résumé—I1 est montré qu’un systéme nominalement linéaire
avec reaction A relais est insensible aux variations acciden-
telles des gains dans le temps ou aux non-linéarités dans les
capteurs d’entrée lorsque le relais vibre.

Zusammenfassung—Gezeigt wird, daB ein nominell lineares
System mit Relais-Riickfiihrung unempfindlich ist gegeniiber
unabsichtlicher zeitvariabler Verstirkung oder Nicht-
linearititen in den Eingangswandlern, wenn das Relais
prellt.

Peslome—ITokassBaercsi 410  HOMMHANBHO-IHHCHHAR
CHCTeMa C penelinolt 06paTHOM CBA3bIO HEYYBCTBHTENbHA K
ClTyyaliHBIM H3MEHEHHSM II0 BpeMEHH Ko3QPHIEeHTOB
YCHJICHHS R X HeNMHEHHOCTSM B BXONHBIX HJATYHKAX
KOrza peiie BuGpHApyeT.



